Gerlinde Wernig Laboratory

“Wohin die Luft der Freiheit weht”

Gerlinde Wernig Laboratory

“Wohin die Luft der Freiheit weht”
“Wohin die Luft der Freiheit weht”

Research

Our mission

Fibrotic diseases is a cover term coined by our laboratory to address complications of the excessive scarring of fibrous tissue. They occur when fibroblasts – a critical component of the structural tissue of the body – proliferate and include, but are not limited to lung fibrosis, kidney and liver fibrosis, scleroderma, wound healing and surgical adhesions. Despite fibrotic diseases being life-threatening-- the mortality rate of some are higher than that of cancer-- current treatments are ineffective and/or entirely nonexistent.  

Our mission is to identify new targets for treatment through uncovering the underlying mechanisms of fibrosis. We seek to understand how fibroblasts crosstalk with one another, with the immune system, and with epithelial and mesenchymal cells. By utilizing mass cytometry, gene expression and chromatin studies of patient-derived primary tissues in combination with in vivo modeling of fibrotic disease in mice, we gain insight into the pathophysiology of fibrotic diseases. We employ immunotherapy combined with small molecules in order to manipulate signaling pathways at the transcriptional level to disrupt pro-fibrotic cell function and fate. The transcriptional networks we study play key roles in fibrotic disease, metabolism, bone physiology, cancer, and immunology. Understanding them will provide the critical foundation to translate our findings into immunotherapies and clinical practice.

Publications

2018
Direct targeting of the mouse optic nerve for therapeutic delivery.
J Neurosci Methods
Mesentier-Louro LA, Dodd R, Domizi P, Nobuta H, Wernig M, Wernig G, Liao YJ
View abstract
Pubmed link
2018
Surgical adhesions in mice are derived from mesothelial cells and can be targeted by antibodies against mesothelial markers.
Sci Transl Med
Tsai JM, Sinha R, Seita J, Fernhoff N, Christ S, Koopmans T, Krampitz GW, McKenna KM, Xing L, Sandholzer M, Sales JH, Shoham M, McCracken M, Joubert LM, Gordon SR, Poux N, Wernig G, Norton JA, Weissman IL, Rinkevich Y
View abstract
Pubmed link
2018
Selective Hematopoietic Stem Cell (HSC) Ablation using CD117 Antibody-Drug-Conjugates Enables Safe and Effective HSC Transplantation with Preservation of Immunity.
Nature Communications
Agnieszka Czechowicz, Rahul Palchaudhuri, Amelia Scheck, Yu Hu 1, Jonathan Hoggatt, Borja Saez, Wendy W. Pang, Michael K. Mansour, Tiffany A. Tate, Yan Yi Cha, Emily Walck, Gerlinde Wernig, Judith A. Shizuru, Florian Winau, David T. Scadden and Derrick J. Rossi.
View abstract
Pubmed link
2018
Different approaches to deliver drug or cells to the mouse optic nerve.
Journal of Neuroscience Methods
Louise A. Mesentier-Louro, Pablo Domizi, Hiroko Nobuta, Marius Wernig, Gerlinde Wernig, Robert Dodd, and Yaping Joyce Liao
View abstract
Pubmed link
2018
Reduced Scar Thickness Achieved by Topical Doxycycline is Mediated by Decreasing Scar Fibroblast Populations and Encouraging Features of Regeneration.
Annals of Surgery
Alessandra L. Moore, MD, Matthew P. Murphy, MB BCh BAO MRCSI, Dre Irizarry, MD, Bryan Duoto, BS, Heather E. desJardins-Park, AB, Shamik Mascharak, BS, Deshka S. Foster, MD, Ruth Ellen Jones, MD, Leandra A. Barnes, AB, Clement D. Marshall, MD, Gerlinde Wernig, MD, Michael T. Longaker, MD, MBA, FACS
View abstract
Pubmed link
2018
Doxycycline Reduces Scar Thickness and Improves Collagen Architecture.
Ann Surg
Moore AL, desJardins-Park HE, Duoto BA, Mascharak S, Murphy MP, Irizarry DM, Foster DS, Jones RE, Barnes LA, Marshall CD, Ransom RC, Wernig G, Longaker MT
View abstract
Pubmed link

News

The latest stories from Gerlinde Wernig and the team
December 13, 2018
Fibrosis reversed when 'don't eat me' signal blocked

We identified a pathway that, when mutated, drives fibrosis in many organs of the body. The pathway underlies what have been considered somewhat disparate conditions, including scleroderma, idiopathic pulmonary fibrosis, liver cirrhosis, kidney fibrosis and more. These diseases are often incurable and life-threatening.

Read more
November 21, 2018
Investigational Anti-cancer Treatment Found to Reverse Fibrosis in Mice

Coverage in Scleroderma News of our work to identify a key element that is responsible for fibrosis of many incurable and life-threatening diseases, such as scleroderma. The finding helps to develop new specific and efficient treatments to reverse tissue fibrosis processes

Read more
November 21, 2018
We find that it is possible to reverse fibrosis

WorldHealth.net covered our work to determine that it is possible to reverse fibrosis. We found that fibrotic diseases that occur in humans are united with a common signaling pathway. The research team determined that the antibody anti-CD47 reverses fibrosis in mice. Anti-CD47 is currently being tested as an anti cancer agent.

Read more
December 13, 2018
2018 Awards

• Elected to Member of the Institute for Regenerative Medicine and Stem Cell Research at Stanford

• Ludwig Investigator award

• Boehringer-Ingelheim Idiopathic pulmonary fibrosis Investigator award

• K08 award, National Institute of Health, NHLBI

• Scleroderma research foundation, Young investigator award

• Desmoid tumor research foundation, Young investigator award


Read more
December 20, 2018
Leukemia drug enters clinical trials

Just three years after discovering a genetic mutation that causes a trio of leukemias, we helped move a new leukemia drug into clinical trials. As part of the Howard Hughes Medical Institute (HHMI), our drug which is based on strong preclinical data has been approved by the FDA for human trials. Our tests in mince populations showed that the drug eliminates clinical manifestation of the leukemias without significant toxicity.

Read more
December 20, 2018
Dialing a bespoke signal

Exploring the fundamental mechanism by which a cell-surface receptor transmits its signal, our team of Ludwig researchers and our colleagues has established proof of concept for an entirely new approach to drug design. Wereport that a class of synthetic molecules known as diabodies can, from outside the cell, latch onto a target receptor and manipulate it in such a manner as to induce distinct and varying effects within cells and tissues. In lab experiments how this might work, using a diabody to stall the growth of cancer cells isolated from patients with myeloproliferative neoplasms.

Read more

People

Members of our lab come from all walks of life...

Gerlinde Wernig

MD, Principal Investigator

Gerlinde is a pathologist by trade whose research centers around the mechanisms of fibrosis and new treatments. She enjoys staying active by hiking in the mountains and sprinting between clinic and lab. She finds optimizing complex lab protocols as gratifying as perfecting the recipes in her side-gig as an undercover chef.

Team

Marc Gastou

PhD, Post-doc

Ever since he gave up baguettes for hamburgers, Marc has been on the path to uncovering the pathomechanisms to develop effective treatments. During his PhD, he worked on understanding the pathophysiological mechanisms of Diamond-Blackfan anemia (DBA). This Parisian’s interests are unsurprisingly sophisticated: cinema, museums and photography. He stays active by playing soccer and golf.

Lui Cui

PHD, Post-doc

Lu’s current research in focusing on the immune modulatory mechanisms in fibrosing conditions and the potential immunotherapy on fibrosis disease. She normally has a lot of different projects on her plate, but she tackles them without hesitation. Also found on her plate are the aromatic home-cooked meals she brings for lunch everyday that make other members hungry before their own lunch break. Her source of energy is hiking every other week with her family.

Tristan Lerbs

MD, Post-doc

Having once dreamt of becoming a pilot and a soccer player, Tristan instead found his calling in medicine. He is studying the effects of transcriptional programs on osteopenia. In his free time (he has none), he enjoys musicals and going to the opera. He manages to sneak in tennis and gym sessions in between incubation periods, and his role model is Mark Wahlberg from Pain & Gain.

Claire Muscat

Stanford Undergraduate

Prospective major in Bioengineering

Jessica Lee

Stanford Undergraduate

Prospective major in Biology

Kevin Guo

Stanford Undergraduate

Prospective Bachelor of Science in Biomedical Computation, pre-medical track

Tyler Shibata

Stanford Undergraduate

Prospective major in Chemistry, biological chemistry track

Alumni

Camille van Neste

MD, PhD candidate

After she had graduated from college at Stanford, Camille was working on mechanism of fibrosis in the lab. She decided  to pursue a career as a physician-scientist and is now an MD and Phd candidate at Mount Sinai Medical School, NY.

Yong-hun Kim

Stanford Computer Science master student

Yong-hun is a junior studying computer science with a concentration in biocomputation. He is currently researching how outcomes for patients with cGVHD can be improved. Outside the lab, you can find him raving about Korean hip hop, watching the lost cause of the Cavs chasing another championship, or nagging Tristan to stop drinking coffee.Yong-hun was admitted to the computer science master program at Stanford

Alexa Vu

Undergraduate student University of Arizona

A cactus hailing from the dusty town of Tucson, Alexa is a summer student majoring in Molecular and Cellular Biology. Despite her nitrile allergy, she enjoys being in lab where she aims to better understand transcriptional factors of bone development. When she is not in the imaging room, Alexa is taking pictures of her food and embarrassing the people with her.

Consultation

Hematopathology consults can be sent to the admin address listed in our contact section. Please include a coversheet and the requisition form provided here.

Partnerships

Current projects and collaborations in the lab

Wound healing – collaboration with Dr. Longaker lab
Chronic Graft-versus Host Disease – collaboration with Dr. Shizuru lab
Lung fibrosis – collaboration with Dr. Desai lab
Scleroderma – Drs. Howard Chang lab, Lori Chung
Eye: Hyperthyroidism, cGVHD, IgG4 disease – collaboration with Dr. Wu lab
Fibrotic tumors/Desmoids - collaboration with Drs. van de Rijn lab/Kumar
Tumor stroma – collaboration with Dr. Plevritis lab
Metabolism and immunity – collaboration with Dr. Weissman lab
Small molecules with antifibrotic properties – collaboration with Dr. Malhotra lab
cJUN drives expansion of bone stem and progenitors – collaboration with Dr. Charles Chan lab

Contact

We are always excited to hear from talented scientists and potential collaborators

Contact Gerlinde Wernig on
gwernig@stanford.edu

Address:
Stanford University School of Medicine,
Institute for Regenerative Medicine & Stem Cell Research,
265 Campus Drive,
Stanford,
CA 94305 - 5461,
U.S.A.

Contact

We are always open to collaboration and interested to hear from talent candidates.

Address:
Stanford University School of Medicine,
Institute for Regenerative Medicine & Stem Cell Research,
265 Campus Drive,
Stanford,
CA 94305 - 5461,
U.S.A.


Contact Gerlinde Wernig on
gwernig@stanford.edu

Or please reach out through her admin, Cevan Smith:
Tel: 650-725-4917
Fax- 650-736-2961
E: csmitty@stanford.edu

Donations

Support of our work from donors and patrons is much appreciated! If you would like to make a donation to the lab, the best way to give is via the Stanford Pathology portal here.

Consultation

Hematopathology consults can be sent to the admin address listed in our contact section. Please include a coversheet and the requisition form provided here.